Lower Semi-continuity of Integrals with G-quasiconvex Potential

نویسنده

  • MARIUS BULIGA
چکیده

defined over Sobolev spaces is connected to the convexity of the potential w. In the scalar case, that is for functions u with domain or range in R, the functional I is weakly W 1,p lower semi-continuous (weakly * W ) if and only if w is convex, provided it is continuous and satisfies some growth conditions. The notion which replaces convexity in the vector case is quasi-convexity (introduced by Morrey [14]). We shall concentrate on the case u : Ω ⊂ R → R which is interesting for continuum media mechanics. Standard notation will be used, like:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Semicontinuity in SBV for Integrals with Variable Growth

We prove a lower semicontinuity result for free discontinuity energies with a quasiconvex volume term having non standard growth and a surface term.

متن کامل

A Note on Meyers’ Theorem in W

Lower semicontinuity properties of multiple integrals u ∈W (Ω;R) 7→ ∫ Ω f(x, u(x), · · · ,∇u(x)) dx are studied when f may grow linearly with respect to the highest-order derivative, ∇ku, and admissible W k,1(Ω;Rd) sequences converge strongly in W k−1,1(Ω;Rd). It is shown that under certain continuity assumptions on f, convexity, 1-quasiconvexity or k-polyconvexity of ξ 7→ f(x0, u(x0), · · · ,∇...

متن کامل

On the Lower Semicontinuity of Quasiconvex Integrals

In this paper, dedicated to Neil Trudinger in the occasion of his 70 birthday, we propose a relatively elementary proof of the weak lower semicontinuity in W 1,p of a general integral of the Calculus of Variations of the type (1.1) below with a quasiconvex density function satisfying p-growth conditions. Several comments and references on the related literature, and a subsection devoted to some...

متن کامل

Approximation of Quasiconvex Functions, and Lower Semicontinuity of Multiple Integrals

We study semicontinuity of multiple integrals ~ f~,u,Du)dx~ where the vector-valued function u is defined for xE ~C N with values in ~ . The function f(x,s,~) is assumed to be Carath@odory and quasiconvex in Morrey's sense. We give conditions on the growth of f that guarantee the sequential lower semicontinuity of the given integral in the weak topology 1 N of the Sobolev space H 'P(~;~ ). The ...

متن کامل

On the Weak Limit of Mappings with Finite Distortion

We give a new proof that the limit of a weakly convergent sequence of mappings with finite distortion also has finite distortion. The result has been recently proved by Gehring and Iwaniec using the biting convergence of Jacobians. We present a different proof using simply the lower semi-continuity of quasiconvex functionals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001